pwd() # Ctrl + ENTER
"C:\\AAABIBLIOTEKA\\MIT_Boston\\Stuttgart"
Przemysław Szufel
Julia Version 1.9.3
Commit bed2cd540a (2023-08-24 14:43 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Windows (x86_64-w64-mingw32)
CPU: 12 × 13th Gen Intel(R) Core(TM) i7-1355U
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, goldmont)
Threads: 2 on 12 virtual cores
Environment:
JULIA_DEPOT_PATH = c:\JuliaPkg\Julia-1.9.3
JULIA_HOME = c:\Julia-1.9.3
JULIA_VERSION = Julia-1.9.3
40×30 Matrix{Float64}:
1.18028e288 3.97085e246 1.12252e-311 … 1.24186e-308 1.11097e-308
8.37171e-144 8.88243e247 8.48798e-314 1.16228e-308 2.80426e-309
7.7282e-91 2.15799e243 1.12252e-311 1.11368e-308 2.81495e-309
1.11032e-47 1.14428e243 0.0 1.39053e-308 2.79554e-309
3.42242e126 1.35617e248 NaN 1.21694e-308 2.77375e-309
3.75598e199 0.0 1.12252e-311 … 1.21446e-308 2.80379e-309
1.12247e-311 0.0 1.12252e-311 1.23045e-308 0.0
1.12252e-311 1.12041e-311 2.122e-314 1.2191e-308 1.4307e-308
1.12252e-311 1.12252e-311 1.12041e-311 1.22031e-308 1.40223e-308
4.0e-323 1.35808e-312 1.12252e-311 3.95351e-309 1.431e-308
6.49269e169 1.12149e-311 1.12252e-311 … 4.09709e-309 1.40176e-308
1.12247e-311 1.16095e-28 1.12252e-311 1.41472e-308 1.43129e-308
0.0 5.80815e286 NaN 4.53233e-309 1.25379e-308
⋮ ⋱
1.12252e-311 0.0 0.0 1.25441e-308 0.0
1.12252e-311 0.0 0.0 1.71226e-309 0.0
1.12252e-311 1.12252e-311 NaN … 2.73984e-309 0.0
1.56246e161 1.12252e-311 1.12252e-311 1.07513e-308 0.0
1.12041e-311 1.12252e-311 1.12252e-311 1.26064e-308 0.0
1.12252e-311 1.12252e-311 2.122e-314 1.73581e-309 0.0
4.24399e-314 4.0e-323 1.12041e-311 2.79838e-309 0.0
4.0e-323 0.0 1.12247e-311 … 1.37498e-308 0.0
1.86078e160 1.12252e-311 0.0 1.10946e-308 0.0
1.12213e-311 1.12252e-311 0.0 1.10984e-308 0.0
1.12149e-311 1.12252e-311 1.12252e-311 1.38799e-308 0.0
1.16466e-28 0.0 0.0 1.23517e-308 0.0
@show Array{Any}(undef, 2, 3) # 2x3 Matrix of Any
@show zeros(5) # vector of Float64 zeros
@show ones(Int64, 2, 1) # 2x1 array of Int64 ones
@show trues(3), falses(3) # tuple of vector of trues and of falses
@show x = range(1, stop=2, length=5) # iterator having 5 equally spaced elements
@show collect(x) # converts iterator to vector
@show 1:10 # iterable from 1 to 10
@show 1:2:10 # iterable from 1 to 9 with 2 skip
@show reshape(1:12, 3, 4) # 3x4 array filled with 1:12 values
Array{Any}(undef, 2, 3) = Any[#undef #undef #undef; #undef #undef #undef]
zeros(5) = [0.0, 0.0, 0.0, 0.0, 0.0]
ones(Int64, 2, 1) = [1; 1;;]
(trues(3), falses(3)) = (Bool[1, 1, 1], Bool[0, 0, 0])
x = range(1, stop = 2, length = 5) = 1.0:0.25:2.0
collect(x) = [1.0, 1.25, 1.5, 1.75, 2.0]
1:10 = 1:10
1:2:10 = 1:2:9
reshape(1:12, 3, 4) = [1 4 7 10; 2 5 8 11; 3 6 9 12]
3×4 reshape(::UnitRange{Int64}, 3, 4) with eltype Int64:
1 4 7 10
2 5 8 11
3 6 9 12
2×3 Matrix{Int64}:
51539607568 51539607564 30064771079
81604378641 30064771084 30064771079
4×5 Matrix{Float64}:
0.0 0.0 66.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
10×10 SparseMatrixCSC{Bool, Int64} with 10 stored entries:
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
10×10 Matrix{Bool}:
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
10×10 SparseMatrixCSC{Bool, Int64} with 10 stored entries:
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
1000000×1000000 SparseMatrixCSC{Float64, Int64} with 99870 stored entries:
⎡⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎤
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎣⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎦
1000000×1000000 SparseMatrixCSC{Float64, Int64} with 10050 stored entries:
⎡⣒⣺⡴⠳⣸⠲⢿⢼⡾⢙⣫⣒⣶⠷⣻⣶⣼⢿⡵⢟⣽⡮⣳⡾⣾⣿⡷⢫⣷⣥⣿⣳⢾⡖⣿⣎⣷⡿⡷⡦⎤
⎢⡼⣿⡿⢫⢶⡽⢊⢿⣬⣛⢷⢿⣾⣟⡫⣾⣟⢯⢞⣿⣿⠷⣿⣻⣾⠯⣾⣯⡵⣦⣿⠿⠗⣶⡺⣾⣿⣟⣷⡟⎥
⎢⠛⣯⢺⡦⡾⣷⣿⣵⣖⣝⣜⣿⣿⣾⣿⡯⣏⣿⡋⣾⡿⢳⣵⣿⠽⣽⣿⣭⡿⡏⣗⣽⣬⣿⣍⣿⣧⡩⣧⣞⎥
⎢⣾⣹⣿⡡⣽⠿⣾⣧⣼⠻⣻⢷⣞⡏⣿⡿⣿⢮⢿⢺⡷⡯⡿⣿⢻⢻⣟⣿⣻⣹⡛⣴⣿⡞⣿⣽⣩⣮⣏⣇⎥
⎢⠋⢿⢳⡱⣩⣿⣷⢷⢿⢄⣩⣽⡻⣿⡿⡫⡿⡟⣯⡷⣿⠷⡿⡿⣯⣳⠼⣯⣫⢿⡟⣿⣯⣟⢻⢿⣯⢛⣷⢨⎥
⎢⢺⣫⣽⣹⣾⣽⣿⣿⢯⣻⢻⢟⣻⣝⣗⢟⠻⣻⣯⣫⡶⣵⣝⠶⣿⡿⣟⣧⣗⣦⢵⢾⣾⣻⣗⣿⡻⡿⣿⡯⎥
⎢⣼⣧⣽⡏⣷⣿⢏⣿⣿⣿⢾⣗⣍⣏⣷⣚⡖⣿⡶⣿⣕⠝⣿⣾⣷⣽⣩⣞⢿⣿⢽⣿⣿⢿⣽⡇⣭⣿⣿⣿⎥
⎢⡹⣏⡊⣾⡻⢤⣛⢿⣇⣿⣽⡎⢾⣯⠶⣿⢿⣾⣿⣿⡺⣿⣻⣓⡟⣞⣟⣯⣿⣽⢵⣱⡿⢻⣓⣼⣣⣯⡾⠏⎥
⎢⠼⣝⡽⡧⢳⣿⣯⣹⣗⣬⣣⣾⣟⣜⣫⣿⣡⣿⣝⢪⢟⣾⣾⣶⣗⣿⣿⣯⡿⣲⢭⢜⣓⣿⣿⡿⣾⣽⢿⡧⎥
⎢⡒⡽⣿⣝⡙⣵⠗⣷⣿⣿⣻⢞⢛⡷⠇⣷⢷⢱⣯⣿⢽⣯⡝⣺⣻⣚⣚⢧⡿⡽⣮⡿⣷⡿⣷⣯⣹⣿⡦⡝⎥
⎢⣿⣗⡛⡾⢽⢮⣿⣿⣲⣿⡻⣮⣿⢾⣶⣿⠺⣸⣷⣻⣿⣷⡿⣻⣻⣿⣮⡥⡾⣿⣿⣼⣾⣶⡿⡿⡿⣾⣷⣷⎥
⎢⡵⣛⣿⣽⣾⣿⣻⣦⣿⡾⣯⣾⣖⡻⡼⣷⡾⣺⣛⢽⡿⣻⣜⠿⢗⣽⣛⢿⣸⣿⣽⣮⣿⣿⡹⣽⣮⡿⣻⡔⎥
⎢⠿⢿⡿⣟⠾⣻⣽⢯⣿⣿⢟⠿⣿⣻⣿⣷⣪⣝⡟⣿⢽⣮⢃⠮⣿⣌⣿⢏⣻⣾⣾⢾⢟⣿⡿⣻⣽⡟⣿⢟⎥
⎢⣻⣿⢟⣿⣺⡦⢽⢷⣯⢹⣽⣽⣿⡾⡿⣿⠻⣿⢷⣽⢿⣿⣷⢛⡳⢿⢿⣷⣟⢻⢾⣑⣛⣵⢽⡿⣳⡃⢻⣟⎥
⎢⣳⡻⢧⡟⣿⡾⡺⠿⣟⣿⠾⣲⣷⢽⣯⡿⣿⣭⡿⣿⡿⢲⣻⣿⣯⢺⡷⣧⣹⣿⣟⣿⠿⠿⢿⣹⣦⣹⣗⣾⎥
⎢⡹⣙⡿⠿⢩⡷⣍⣪⣯⡻⣿⣽⣿⣿⣷⢷⢹⣟⣙⣽⣟⡝⣿⡳⣯⢹⣸⢿⠭⣟⡅⣟⣿⣈⣿⣟⢫⡽⣍⣯⎥
⎢⢯⣿⣍⣻⡻⣶⣷⡯⣛⣞⣞⣿⡯⣷⡽⣯⢿⣭⡹⣿⣝⡦⣿⣿⣿⡬⣽⣿⣟⣭⣝⣾⡿⣿⣿⡿⠬⣭⢢⠯⎥
⎢⣺⣪⣺⣾⣮⡷⡮⡏⣿⣿⣻⣿⣷⠧⡵⣷⣹⡮⣷⣝⣾⢿⢷⢟⠏⣷⣭⣿⡞⣾⣛⣝⣩⣾⢦⣽⣿⠿⣼⡯⎥
⎢⣋⣟⣚⣾⣛⣿⣿⣯⣿⣺⣯⢿⣿⢿⣽⠽⣿⣟⣿⣺⣿⡽⢷⢿⣿⣽⣿⢟⣿⣽⠿⠛⣸⢿⡯⢽⣟⢛⣿⡻⎥
⎣⠸⠯⡿⠽⡖⠏⠿⢿⢗⣿⣗⡳⡷⠷⡿⡿⠯⡟⢯⡾⢯⢫⡵⢟⣞⠷⡯⡿⣛⠿⠼⠿⢽⡿⡣⠾⠯⡾⣽⣍⎦
1000000×1000000 SparseMatrixCSC{Float64, Int64} with 109920 stored entries:
⎡⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎤
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎢⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎥
⎣⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⎦
7×7 BandedMatrix{Float64} with bandwidths (0, 0):
1.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1.0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1.0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1.0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1.0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1.0 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1.0
7×7 BandedMatrix{Float64} with bandwidths (1, 1):
1.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
0.0 1.0 0.0 ⋅ ⋅ ⋅ ⋅
⋅ 0.0 1.0 0.0 ⋅ ⋅ ⋅
⋅ ⋅ 0.0 1.0 0.0 ⋅ ⋅
⋅ ⋅ ⋅ 0.0 1.0 0.0 ⋅
⋅ ⋅ ⋅ ⋅ 0.0 1.0 0.0
⋅ ⋅ ⋅ ⋅ ⋅ 0.0 1.0
7×7 BandedMatrix{Float64} with bandwidths (1, 2):
0.0 0.0 0.0 ⋅ ⋅ ⋅ ⋅
0.0 0.0 0.0 0.0 ⋅ ⋅ ⋅
⋅ 0.0 0.0 0.0 0.0 ⋅ ⋅
⋅ ⋅ 0.0 0.0 0.0 0.0 ⋅
⋅ ⋅ ⋅ 0.0 0.0 0.0 0.0
⋅ ⋅ ⋅ ⋅ 0.0 0.0 0.0
⋅ ⋅ ⋅ ⋅ ⋅ 0.0 0.0
7×7 BandedMatrix{Int64} with bandwidths (1, 0):
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
8 2 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 9 3 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 10 4 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 11 5 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 12 6 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 13 7
7×7 BandedMatrix{Float64} with bandwidths (1, 1):
2.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
8.0 3.0 0.0 ⋅ ⋅ ⋅ ⋅
⋅ 9.0 4.0 0.0 ⋅ ⋅ ⋅
⋅ ⋅ 10.0 5.0 0.0 ⋅ ⋅
⋅ ⋅ ⋅ 11.0 6.0 0.0 ⋅
⋅ ⋅ ⋅ ⋅ 12.0 7.0 0.0
⋅ ⋅ ⋅ ⋅ ⋅ 13.0 8.0
7×7 BandedMatrix{Float64} with bandwidths (1, 1):
2.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
8.0 3.0 0.0 ⋅ ⋅ ⋅ ⋅
⋅ 9.0 4.0 0.0 ⋅ ⋅ ⋅
⋅ ⋅ 10.0 5.0 0.0 ⋅ ⋅
⋅ ⋅ ⋅ 11.0 99.0 0.0 ⋅
⋅ ⋅ ⋅ ⋅ 999.0 7.0 0.0
⋅ ⋅ ⋅ ⋅ ⋅ 13.0 8.0
10000×10000 BandedMatrix{Float64} with bandwidths (4, 3):
0.717031 0.00970876 0.36922 0.676207 … ⋅ ⋅ ⋅
0.524178 0.458799 0.769404 0.0453147 ⋅ ⋅ ⋅
0.64484 0.24969 0.876344 0.0749038 ⋅ ⋅ ⋅
0.898134 0.544399 0.505147 0.468312 ⋅ ⋅ ⋅
0.447232 0.937858 0.918129 0.584957 ⋅ ⋅ ⋅
⋅ 0.472211 0.725038 0.169458 … ⋅ ⋅ ⋅
⋅ ⋅ 0.875969 0.86004 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0.413408 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋮ ⋱
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0.601123 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ … 0.845169 0.991419 ⋅
⋅ ⋅ ⋅ ⋅ 0.811976 0.670674 0.474065
⋅ ⋅ ⋅ ⋅ 0.318209 0.641995 0.94989
⋅ ⋅ ⋅ ⋅ 0.22135 0.198353 0.664046
⋅ ⋅ ⋅ ⋅ 0.544739 0.733808 0.51824
10000-element Vector{Float64}:
-0.8946805178374083
1.791456844344719
-1.006332232770576
0.791271927711156
-0.94388977856925
-0.5040404487535977
1.1438942503322178
0.9156317592307124
-0.35552174058202674
-0.6318695191330024
1.5025208196461846
-1.4482466971059618
0.17640586952859919
⋮
-0.3754881597565462
-0.51204988872086
-0.23009357169989553
0.9263014134731414
1.1145981384963324
-0.18044177324813834
0.5248468744312341
0.17633316812053937
1.8671731928639776
-0.9640139843966083
-0.9608403570552534
-2.0782487798309455
10000-element Vector{Float64}:
-0.46061597769868723
-0.9265070327469163
-2.013311452629498
-0.7506352359068451
-0.06983968834709088
1.018277053750206
-0.8251580030395005
1.8107551270275635
-1.5123515240377137
-0.5287396651053948
-0.8581073378399161
-0.7516150550394638
-1.2631999408486454
⋮
0.1842696379906157
1.5976905287134318
1.0873361557626304
1.33002721957883
1.9513355177555978
2.3502263751233157
0.7054007981349245
-0.1342826431395634
-1.290661336050847
-1.3111973496087521
0.06480040232269113
-1.388614621665221
10000×10000 BandedMatrix{Float64} with bandwidths (8, 6):
1.36464 0.471733 0.937361 0.829633 … ⋅ ⋅ ⋅
1.40954 0.969943 1.76996 0.789391 ⋅ ⋅ ⋅
1.58287 1.41727 2.41116 1.11858 ⋅ ⋅ ⋅
1.98477 1.56936 2.6256 1.52106 ⋅ ⋅ ⋅
2.24524 1.907 3.07939 1.23695 ⋅ ⋅ ⋅
1.00182 1.04811 2.15919 1.19748 … ⋅ ⋅ ⋅
1.52705 1.3049 2.08748 1.12917 ⋅ ⋅ ⋅
0.69866 1.18208 1.87358 1.61458 ⋅ ⋅ ⋅
0.44223 1.29412 2.13079 1.59959 ⋅ ⋅ ⋅
⋅ 0.175528 0.401125 0.228377 ⋅ ⋅ ⋅
⋅ ⋅ 0.312613 0.478744 … ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0.267922 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋮ ⋱
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0.579612 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1.24427 0.775432 ⋅
⋅ ⋅ ⋅ ⋅ 1.09257 0.557801 0.27567
⋅ ⋅ ⋅ ⋅ 1.26119 1.1039 0.679625
⋅ ⋅ ⋅ ⋅ … 1.78903 1.65778 1.57376
⋅ ⋅ ⋅ ⋅ 1.56548 1.86529 1.48994
⋅ ⋅ ⋅ ⋅ 1.88381 1.90089 1.6069
⋅ ⋅ ⋅ ⋅ 1.78658 1.89717 1.11774
⋅ ⋅ ⋅ ⋅ 1.55716 1.85718 1.47509
2.290472 seconds (2.51 M allocations: 170.883 MiB, 6.95% gc time, 99.57% compilation time)
10000-element Vector{Float64}:
-9.91674386347239
-10.444435524208323
-41.59197593049818
32.05223575044192
73.84927967273306
-27.812181705093835
-88.75981265563105
56.52742402129784
85.06971609320844
-79.71545999885285
-77.01728811351599
9.002008266490867
59.49522736987263
⋮
4.779827015270882e10
6.540332502802427e10
-3.116607411863486e10
3.1950751793228928e10
-1.7542419719066235e10
2.534581982521389e10
-5.195472316257162e10
-1.2631042018255177e10
1.4642478006565704e10
5.8643172114918945e10
-3.0952824972707294e10
-1.2727204977828215e10
using JuMP, HiGHS
m = Model(HiGHS.Optimizer)
@variable(m, x₁ >= 0)
@variable(m, x₂ >= 0)
@objective(m, Min, 50x₁ + 70x₂)
@constraint(m, 200x₁ + 2000*x₂ >= 9000)
@constraint(m, 100x₁ + 30x₂ >= 300)
@constraint(m, 9x₁ + 11x₂ >= 60)
println(m)
Min 50 x₁ + 70 x₂
Subject to
200 x₁ + 2000 x₂ >= 9000
100 x₁ + 30 x₂ >= 300
9 x₁ + 11 x₂ >= 60
x₁ >= 0
x₂ >= 0
A JuMP Model
Minimization problem with:
Variables: 2
Objective function type: AffExpr
`AffExpr`-in-`MathOptInterface.GreaterThan{Float64}`: 3 constraints
`VariableRef`-in-`MathOptInterface.GreaterThan{Float64}`: 2 constraints
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: HiGHS
Names registered in the model: x₁, x₂
Running HiGHS 1.5.3 [date: 1970-01-01, git hash: 45a127b78]
Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
3 rows, 2 cols, 6 nonzeros
3 rows, 2 cols, 6 nonzeros
Presolve : Reductions: rows 3(-0); columns 2(-0); elements 6(-0) - Not reduced
Problem not reduced by presolve: solving the LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Pr: 3(2205) 0s
2 3.8814432990e+02 Pr: 0(0) 0s
Model status : Optimal
Simplex iterations: 2
Objective value : 3.8814432990e+02
HiGHS run time : 0.02
The same model as above but now the decision variables are expected to be integers
m = Model(HiGHS.Optimizer)
@variable(m, 100 >= x₁ >= 0, Int)
@variable(m, 110 >= x₂ >= 0, Int)
@objective(m, Min, 50x₁ + 70x₂)
@constraint(m, 200x₁ + 2000x₂ >= 9000)
@constraint(m, 100x₁ + 30x₂ >= 300)
@constraint(m, 9x₁ + 11x₂ >= 60)
println(m)
Min 50 x₁ + 70 x₂
Subject to
200 x₁ + 2000 x₂ >= 9000
100 x₁ + 30 x₂ >= 300
9 x₁ + 11 x₂ >= 60
x₁ >= 0
x₂ >= 0
x₁ <= 100
x₂ <= 110
x₁ integer
x₂ integer
Running HiGHS 1.5.3 [date: 1970-01-01, git hash: 45a127b78]
Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
3 rows, 2 cols, 6 nonzeros
3 rows, 2 cols, 6 nonzeros
Objective function is integral with scale 0.1
Solving MIP model with:
3 rows
2 cols (0 binary, 2 integer, 0 implied int., 0 continuous)
6 nonzeros
Nodes | B&B Tree | Objective Bounds | Dynamic Constraints | Work
Proc. InQueue | Leaves Expl. | BestBound BestSol Gap | Cuts InLp Confl. | LpIters Time
0 0 0 0.00% 0 inf inf 0 0 0 0 0.0s
Solving report
Status Optimal
Primal bound 450
Dual bound 450
Gap 0% (tolerance: 0.01%)
Solution status feasible
450 (objective)
0 (bound viol.)
0 (int. viol.)
0 (row viol.)
Timing 0.00 (total)
0.00 (presolve)
0.00 (postsolve)
Nodes 1
LP iterations 2 (total)
0 (strong br.)
0 (separation)
0 (heuristics)
What are those @
macros we are seeing around?
@sayhello (macro with 1 method)
Code is being generated
Hello, John
0.000393 seconds (26 allocations: 1024 bytes)
begin
#= In[89]:1 =#
JuMP._valid_model(m, :m)
begin
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:128 =#
JuMP._error_if_cannot_register(m, :x₁)
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:136 =#
var"#117###340" = begin
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:1210 =#
let m = m
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:1211 =#
JuMP.add_variable(m, JuMP.model_convert(m, JuMP.build_variable(JuMP.var"#_error#115"{LineNumberNode}(:(#= In[89]:1 =#), Core.Box((:m, :(x₁ >= 0)))), JuMP.VariableInfo(true, 0, false, NaN, false, NaN, false, NaN, false, false))), if JuMP.set_string_names_on_creation(m)
"x₁"
else
""
end)
end
end
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:137 =#
m[:x₁] = var"#117###340"
#= c:\JuliaPkg\Julia-1.9.3\packages\JuMP\OUdu2\src\macros.jl:143 =#
x₁ = var"#117###340"
end
end
:(sin(x) + x * x + 5x)
├─ :+
├─ :(sin(x))
│ ├─ :sin
│ └─ :x
├─ :(x * x)
│ ├─ :*
│ ├─ :x
│ └─ :x
└─ :(5x)
├─ :*
├─ 5
└─ :x
dat="""21328 7901 16774 24413 14131 21551 15742 21091 25167 3266 19312 14878 22914 18392 14514 21072 11535 12965 12952 12952 15839 27836 16816 13527 13769 4924 23891 26532 10245 15446 16834 11421 27231 20285 25810 12477 16499 26958 23770 32327 23572 26475 23894 2054 22156 28491 2392 21051 18793 14598 9413 8004 14286 8717 24919 27581 21829 26135 33450 4905 18558 23046 9212 20923 6426 20020 24644 10862 12351 16446 7751 19819 17406 16768 9319 17584 8191 18776 22432 20389 25377 3129 22425 6899 16830 12305 3393 24579 16727 21086 30660 26999 29664 26436 26138 28183 20874 30143 30419 29718
5195 15055 4216 9295 6050 4779 3641 15102 8395 16829 5224 3595 14177 1684 2753 4300 5469 4233 3962 3962 3039 13176 12595 4764 5428 12767 7119 11115 6960 1597 1173 5848 26351 10941 19927 7174 13542 11015 6998 18198 18270 9703 7376 15867 21981 12387 19029 6936 9170 15206 7748 8933 11906 12823 24031 21698 8083 11432 18205 18548 17558 25919 10027 7178 10521 19897 29294 15136 13659 10764 18656 7135 9574 19550 13973 11620 17524 10944 9910 9940 26373 13762 11058 16154 22702 19728 14022 13212 4280 7563 22298 13152 15728 12308 17068 19554 12880 16313 18674 20915
24025 13295 22003 22254 20379 26418 22859 10495 28761 12735 29656 23437 36220 24616 24042 28477 24395 24758 25121 25121 26548 22646 30633 22842 26491 16326 27452 24373 23067 25325 26551 21542 15677 33471 14651 19634 30316 26735 29375 24969 12413 28023 29753 17066 10602 28267 17790 19925 31979 11657 20017 21593 15001 22657 12101 16422 32830 33810 28260 19918 7961 10227 17414 32204 20070 8789 9898 25254 26654 15742 22269 18946 30636 6105 14423 31182 22709 32007 34792 15723 12559 17643 34786 12754 2900 26823 15171 36939 28008 19237 19501 18955 20687 20740 15099 17024 13131 22051 19380 18559
22508 22014 17954 25593 16490 22230 16922 24989 25524 22994 19299 15807 6155 19098 15443 21468 12730 13765 13698 13698 16518 29016 5152 14712 12407 19272 24570 27712 12077 16125 17442 13516 36239 9317 29815 14836 4483 28138 23911 33506 28157 27086 24005 18712 31869 29670 18413 22231 11140 22962 14736 13031 19351 12074 33919 31585 16632 23191 34630 15865 26772 35807 17273 14708 14646 29784 39182 9608 8373 18948 12547 20876 8411 28622 21042 6315 12007 7728 12270 22466 36261 17719 9635 23113 31385 8204 20527 7661 15899 22181 34494 28057 30721 27616 29264 31749 23716 31201 32314 33111
12913 5006 10217 14089 7574 15206 10375 9595 18453 9762 18403 10736 23395 12829 11221 17256 11328 11937 12300 12300 13779 17052 17405 10020 13666 7932 17144 16209 9839 13158 14563 8314 17138 20646 14521 6406 17088 16684 19067 21542 12283 17714 19445 11789 12768 18217 15071 10777 19154 2717 6596 8172 2025 9318 14805 16292 20943 23502 22666 14640 7256 16706 3917 20037 6821 10026 20081 11915 13233 4235 14855 9053 17812 8378 3697 18089 14029 19182 22625 8169 17147 9683 22619 6321 11174 17884 9520 24772 15841 10116 19371 16003 18668 15652 14502 16894 8883 19148 18556 18349
6281 16514 5753 10410 7509 5795 5099 16782 9308 18288 3312 4999 12625 2798 4158 5230 4648 3949 3341 3341 2010 14262 11741 5686 4491 14172 8135 12202 6139 1903 833 7252 28032 9390 21608 8633 12688 12061 7800 19313 19950 10719 7894 15046 23662 13403 18173 8050 7618 16665 9152 8112 13364 11967 25712 23378 6171 10135 19220 17692 19239 27600 11486 5266 9700 21577 30975 14265 12788 12222 17785 8823 8548 21230 15432 10622 16653 9685 7998 11620 28054 12940 9507 17612 24382 18873 15427 11660 3003 8736 23737 14267 16842 13422 18513 21173 14561 17427 19876 22534
4656 19128 9008 4124 11894 5115 10216 15084 4473 23560 7924 11296 21642 8036 12133 5794 14532 13370 13273 13273 12492 5169 21810 12436 14643 21431 3145 2102 16062 11050 9979 14704 26333 18420 19909 13545 22757 1361 5712 10225 18252 3044 6090 24906 21963 2893 28161 5968 16648 16074 16577 18035 13324 21984 24014 21680 11094 10146 8657 27685 17540 25902 17061 12978 19586 19879 29276 24306 22830 12163 27827 7636 18788 19532 17819 20835 26694 20159 15710 9922 26355 22801 18447 20443 22684 28942 22852 20547 13660 6657 21239 9808 12248 7988 16401 19061 12862 10557 16997 20422
16446 6905 14412 14675 11772 18839 14588 7393 21182 11243 22077 14949 27612 17024 15434 20898 15787 16151 16513 16513 17993 16064 22025 14234 17883 9936 19873 16795 14459 17371 18776 12934 14600 24863 12201 11026 21708 19156 21796 20555 9963 20444 22174 13463 10230 20688 16645 12347 23371 2861 11340 12916 6325 14030 12267 13972 25156 26231 21678 16314 4936 12206 8733 24250 11443 6518 15339 16627 17978 7135 16968 11368 22029 3256 5796 22574 17408 23399 26839 8145 14538 11797 26832 8220 6019 21522 11470 28986 20054 11658 17050 15108 17399 14664 12468 14574 6924 18252 16749 16109
12070 11940 10048 10299 8061 14463 10878 2839 16806 16286 17701 11239 23901 12661 11724 16522 12122 12440 12803 12803 14282 11080 18749 10523 14172 14959 15497 12419 11183 13370 14597 9658 14089 21152 7665 7700 18432 14780 17420 15539 6007 16068 17798 18505 9719 16312 21688 7971 19661 5094 10528 12139 5548 16015 11769 9435 20875 21855 16694 21357 5295 13657 10644 20249 13538 7634 17032 18604 17127 3353 21847 6992 18318 7287 10724 18909 20725 19688 22837 3769 14111 16676 22831 13254 10342 24395 16513 24984 16053 7282 12491 9848 12040 9648 7426 9830 1565 12993 11480 11273
10329 23462 13628 6311 16247 10788 14836 14910 7331 27913 13481 15916 27214 13710 16784 11351 19112 17990 17893 17893 18028 2647 26430 16997 19262 25789 8815 4323 20625 16722 15636 19217 26160 23992 19703 17898 27377 4669 9312 5419 18078 5880 9548 29264 21790 5165 32546 9541 22221 17837 20935 22545 17686 26421 23840 21156 16651 13619 3334 32102 17366 25728 21419 18550 23944 19705 29103 28886 27409 15635 32264 11041 23408 19358 22153 25455 31131 24779 21282 11857 26182 27159 24019 24777 22510 33562 27210 26120 19317 9710 19225 7343 9606 5523 14848 17430 12203 7915 14982 18439
9046 7229 6350 10918 3587 11339 6397 7802 14626 11985 14424 6758 19420 8962 7243 13389 7493 7959 8322 8322 9801 14306 13857 6042 9691 10151 13317 13037 6291 9180 10585 4767 19051 16671 12628 2808 13541 13463 15240 18797 10970 13888 15618 13923 14681 14996 17205 7556 15180 6200 5636 7247 2636 11123 16732 14398 16964 19675 19921 16774 9996 18620 5807 16059 8646 12597 21994 13712 12236 1761 16966 5969 13837 11847 5920 14279 15834 15208 18647 5814 19073 11817 18641 8544 14609 19504 11740 20794 11863 7254 17377 13258 15923 12907 12147 14632 6528 16403 16201 15994
4657 14007 4438 3771 6792 7050 5646 9018 9393 18458 10288 6726 19802 5879 7594 9109 9647 8800 8703 8703 8838 7010 17078 7532 10073 16334 8084 5890 11170 7533 8037 9762 20267 16877 13843 8443 18024 7499 10007 11501 12186 8655 10385 19810 15897 9032 23092 475 15105 10063 11480 13090 8130 16966 17948 15614 13462 14442 12625 22647 11474 19836 11964 13509 14489 13813 23210 19421 17945 6236 22809 1641 14219 13466 12699 15994 21677 15589 16241 3856 20289 17704 16993 15322 16618 24210 17755 19147 10215 239 15528 6455 8962 5611 10304 12964 6796 9616 11742 14325
16168 26420 17376 13468 19205 18438 18584 14330 20479 30871 21676 19664 32739 18651 20532 20497 22329 21738 21641 21641 21776 11708 29491 20520 23011 28747 19444 14693 23583 20470 20809 22175 13538 29815 9415 20856 30437 17221 21396 8872 12092 19047 21773 32223 13988 18752 35504 13302 28043 20840 23893 25503 20740 29379 14349 9468 24851 25830 16745 35060 16582 17173 24377 25029 26902 15501 19174 31968 30491 18559 35222 13999 27156 18554 25111 28487 34089 28527 27761 14815 16400 30117 29931 27735 21545 36623 30168 32085 23153 13264 6197 7925 4260 9841 9124 7119 14589 5954 5049 5752
3485 11419 1299 6632 4185 5779 2507 10988 9414 15851 9008 3586 16662 3402 4455 7829 6823 5661 5564 5564 5416 10055 14101 4742 6933 13733 8106 8751 8353 4111 5337 6995 22238 13455 15814 5836 15048 8923 10029 14546 14156 8763 10407 17212 17868 10455 20452 3270 11683 11254 8883 10326 7960 14275 19918 17585 11895 14463 15669 19976 13445 21806 9362 10990 11892 15784 25181 16597 15121 6811 20117 2917 11079 15437 10110 13126 18985 12450 13578 5827 22260 15107 13572 12733 18588 21233 15158 15725 6794 3345 18185 9500 12007 8655 12955 15440 8767 12661 14455 16802
20790 9466 18768 19019 16388 23183 19204 8048 25526 11781 26421 19566 32228 21381 20050 25242 20403 20767 21130 21130 22609 19411 26641 18850 22499 12497 24217 21138 19075 21988 23316 17550 14121 29479 12701 15643 26324 23500 26140 22523 10462 24788 26518 14435 9046 25032 17184 16690 27988 7647 16008 17583 10992 18647 11810 14471 29595 30575 25025 17287 5515 9936 13405 28867 16060 6910 13069 21244 22645 11751 19529 15711 26645 3659 10414 27190 19969 28015 31455 12488 12268 14358 31448 9386 3721 24083 12443 33602 24671 16002 17550 16509 18607 17505 13028 15073 9896 19605 17309 16608
5209 18274 7514 9447 9270 4512 6860 18543 7991 20049 1770 6760 12619 4480 5919 3913 6409 5710 5102 5102 3771 13094 13449 7447 6252 15933 6849 11034 7900 3664 2533 9013 29793 9396 23369 10394 14396 10775 6403 19042 21711 9433 6497 16807 25423 12117 19933 9297 7625 18426 10913 9872 15125 13727 27473 25139 4829 8593 17935 19453 20999 29361 13247 3955 11460 23338 32736 15967 14491 13983 19488 10504 10133 22991 17193 12207 18355 11270 6687 13381 29815 14701 9423 19373 26143 20582 17188 11524 4764 9986 25177 14146 17374 13177 20016 22675 16322 17157 20935 24036
11294 12965 9272 9523 8056 13686 10128 2354 16029 17305 16925 10705 23655 11884 11574 15745 12558 12435 12683 12683 13816 9914 19729 10518 13926 15996 14721 11642 12295 12593 13820 10771 13604 20906 7180 8812 19545 14003 16644 14373 5522 15291 17022 19525 9234 15536 22708 7194 19415 6113 11640 13251 6661 17127 11284 8951 20099 21078 15528 22377 4811 13172 11756 19472 14650 7150 16547 19716 18239 4465 22960 6215 18072 6803 11837 18726 21838 19442 22060 2992 13626 17788 22054 14280 9954 25508 17533 24208 15276 6505 11490 8682 10874 8483 6260 8746 400 11827 10314 10107
5303 9560 2607 8328 2468 7596 3463 9535 11232 14134 10826 4040 16990 5219 4909 9646 5902 6115 6018 6018 7151 11553 13064 4295 7261 12016 9923 10447 6988 5928 7155 5580 20785 14241 14361 4119 14011 10873 11846 16044 12703 10580 12224 15533 16415 12406 18815 4966 12750 9395 7204 8813 6101 12689 18465 16131 13713 16281 17167 18371 11992 20353 7646 12807 10213 14330 23728 15278 13802 4953 18532 3288 11407 13983 8252 12061 17400 12778 15396 4373 20807 13428 15389 10875 17135 20196 13479 17543 8611 4601 16731 10469 13133 10153 11502 13987 7314 13613 14444 15348
""";
18×100 Matrix{Int64}:
21328 7901 16774 24413 14131 … 28183 20874 30143 30419 29718
5195 15055 4216 9295 6050 19554 12880 16313 18674 20915
24025 13295 22003 22254 20379 17024 13131 22051 19380 18559
22508 22014 17954 25593 16490 31749 23716 31201 32314 33111
12913 5006 10217 14089 7574 16894 8883 19148 18556 18349
6281 16514 5753 10410 7509 … 21173 14561 17427 19876 22534
4656 19128 9008 4124 11894 19061 12862 10557 16997 20422
16446 6905 14412 14675 11772 14574 6924 18252 16749 16109
12070 11940 10048 10299 8061 9830 1565 12993 11480 11273
10329 23462 13628 6311 16247 17430 12203 7915 14982 18439
9046 7229 6350 10918 3587 … 14632 6528 16403 16201 15994
4657 14007 4438 3771 6792 12964 6796 9616 11742 14325
16168 26420 17376 13468 19205 7119 14589 5954 5049 5752
3485 11419 1299 6632 4185 15440 8767 12661 14455 16802
20790 9466 18768 19019 16388 15073 9896 19605 17309 16608
5209 18274 7514 9447 9270 … 22675 16322 17157 20935 24036
11294 12965 9272 9523 8056 8746 400 11827 10314 10107
5303 9560 2607 8328 2468 13987 7314 13613 14444 15348
18×100 Matrix{VariableRef}:
x[1,1] x[1,2] x[1,3] x[1,4] … x[1,98] x[1,99] x[1,100]
x[2,1] x[2,2] x[2,3] x[2,4] x[2,98] x[2,99] x[2,100]
x[3,1] x[3,2] x[3,3] x[3,4] x[3,98] x[3,99] x[3,100]
x[4,1] x[4,2] x[4,3] x[4,4] x[4,98] x[4,99] x[4,100]
x[5,1] x[5,2] x[5,3] x[5,4] x[5,98] x[5,99] x[5,100]
x[6,1] x[6,2] x[6,3] x[6,4] … x[6,98] x[6,99] x[6,100]
x[7,1] x[7,2] x[7,3] x[7,4] x[7,98] x[7,99] x[7,100]
x[8,1] x[8,2] x[8,3] x[8,4] x[8,98] x[8,99] x[8,100]
x[9,1] x[9,2] x[9,3] x[9,4] x[9,98] x[9,99] x[9,100]
x[10,1] x[10,2] x[10,3] x[10,4] x[10,98] x[10,99] x[10,100]
x[11,1] x[11,2] x[11,3] x[11,4] … x[11,98] x[11,99] x[11,100]
x[12,1] x[12,2] x[12,3] x[12,4] x[12,98] x[12,99] x[12,100]
x[13,1] x[13,2] x[13,3] x[13,4] x[13,98] x[13,99] x[13,100]
x[14,1] x[14,2] x[14,3] x[14,4] x[14,98] x[14,99] x[14,100]
x[15,1] x[15,2] x[15,3] x[15,4] x[15,98] x[15,99] x[15,100]
x[16,1] x[16,2] x[16,3] x[16,4] … x[16,98] x[16,99] x[16,100]
x[17,1] x[17,2] x[17,3] x[17,4] x[17,98] x[17,99] x[17,100]
x[18,1] x[18,2] x[18,3] x[18,4] x[18,98] x[18,99] x[18,100]
Running HiGHS 1.5.3 [date: 1970-01-01, git hash: 45a127b78]
Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
118 rows, 1800 cols, 3600 nonzeros
118 rows, 1800 cols, 3600 nonzeros
Objective function is integral with scale 1
Solving MIP model with:
118 rows
1800 cols (0 binary, 1800 integer, 0 implied int., 0 continuous)
3600 nonzeros
Nodes | B&B Tree | Objective Bounds | Dynamic Constraints | Work
Proc. InQueue | Leaves Expl. | BestBound BestSol Gap | Cuts InLp Confl. | LpIters Time
0 0 0 0.00% 0 inf inf 0 0 0 0 0.0s
T 0 0 0 0.00% 0 7994805 100.00% 0 0 0 144 0.0s
Solving report
Status Optimal
Primal bound 7994805
Dual bound 7994805
Gap 0% (tolerance: 0.01%)
Solution status feasible
7994805 (objective)
0 (bound viol.)
0 (int. viol.)
0 (row viol.)
Timing 0.03 (total)
0.02 (presolve)
0.00 (postsolve)
Nodes 1
LP iterations 144 (total)
0 (strong br.)
0 (separation)
0 (heuristics)
termination_status(m) = MathOptInterface.OPTIMAL
OPTIMAL::TerminationStatusCode = 1
Enum MathOptInterface.TerminationStatusCode:
OPTIMIZE_NOT_CALLED = 0
OPTIMAL = 1
INFEASIBLE = 2
DUAL_INFEASIBLE = 3
LOCALLY_SOLVED = 4
LOCALLY_INFEASIBLE = 5
INFEASIBLE_OR_UNBOUNDED = 6
ALMOST_OPTIMAL = 7
ALMOST_INFEASIBLE = 8
ALMOST_DUAL_INFEASIBLE = 9
ALMOST_LOCALLY_SOLVED = 10
ITERATION_LIMIT = 11
TIME_LIMIT = 12
NODE_LIMIT = 13
SOLUTION_LIMIT = 14
MEMORY_LIMIT = 15
OBJECTIVE_LIMIT = 16
NORM_LIMIT = 17
OTHER_LIMIT = 18
SLOW_PROGRESS = 19
NUMERICAL_ERROR = 20
INVALID_MODEL = 21
INVALID_OPTION = 22
INTERRUPTED = 23
OTHER_ERROR = 24
18×100 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0 0.0 15.0 15.0 15.0
15.0 0.0 15.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 15.0 0.0 15.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18×100 SparseMatrixCSC{Float64, Int64} with 109 stored entries:
⎡⠀⠀⠀⠈⠀⠖⠂⠒⠀⠄⡀⠐⠂⠀⠠⠀⠀⠁⠈⠀⠀⡀⠀⠈⢀⢀⢠⠄⠁⢀⢄⠀⠈⠠⠬⠀⠀⠀⠀⠀⎤
⎢⠐⠀⠀⠒⠀⠀⠀⠈⢁⠈⠒⡀⠀⠡⠀⢂⠐⠂⡂⠑⠀⠀⠄⡀⠂⠀⠂⠀⠈⠂⠈⠀⠀⠂⠀⠁⠀⡀⠀⠀⎥
⎢⠄⠅⠤⠀⡠⠀⠀⠄⠀⠀⠀⠁⠈⡂⠁⠀⠀⢀⠀⠁⠉⠀⢀⠀⢀⡀⠀⠉⠈⠀⠀⡀⣀⠀⠀⠈⠚⠀⠒⠒⎥
⎣⠀⠐⠀⠁⠀⠀⠐⠀⠀⠂⠀⠂⠀⠉⠀⠀⠁⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠈⠈⠀⎦
dist_mx = [0 17015 15303 20376 12648 16060 25600 14217 19545 30228 14726 21078 33787 18041 14937 17542 20542 16535 21328 7901 16774 24413 14131 21551 15742 21091 25167 3266 19312 14878 22914 18392 14514 21072 11535 12965 12952 12952 15839 27836;
16837 0 25356 17812 13534 1912 9654 17639 13597 15441 9377 7410 19851 4218 22311 3454 12747 6168 5195 15055 4216 9295 6050 4779 3641 15102 8395 16829 5224 3595 14177 1684 2753 4300 5469 4233 3962 3962 3039 13176;
15660 25640 0 34363 13497 27290 25638 8902 13080 25038 17262 19451 23966 21412 6475 28799 12799 19902 24025 13295 22003 22254 20379 26418 22859 10495 28761 12735 29656 23437 36220 24616 24042 28477 24395 24758 25121 25121 26548 22646;
20378 17694 34039 0 20952 16668 26779 25408 22341 31408 17228 22258 34845 19221 30215 17941 23384 18694 22508 22014 17954 25593 16490 22230 16922 24989 25524 22994 19299 15807 6155 19098 15443 21468 12730 13765 13698 13698 16518 29016;
12758 13651 13828 21135 0 15151 15588 5176 7509 19444 4278 10350 22791 9625 10004 16632 8551 7771 12913 5006 10217 14089 7574 15206 10375 9595 18453 9762 18403 10736 23395 12829 11221 17256 11328 11937 12300 12300 13779 17052;
16015 1958 27036 16957 14992 0 10700 19097 15278 16499 10835 8524 20966 5921 23905 1542 14428 7849 6281 16514 5753 10410 7509 5795 5099 16782 9308 18288 3312 4999 12625 2798 4158 5230 4648 3949 3341 3341 2010 14262;
25876 9612 25338 27027 15004 10657 0 17917 13580 5809 12445 6443 16347 7810 22293 9558 12729 9769 4656 19128 9008 4124 11894 5115 10216 15084 4473 23560 7924 11296 21642 8036 12133 5794 14532 13370 13273 13273 12492 5169;
14417 17865 8673 25755 4815 19364 18059 0 5596 18456 8654 11873 21416 13820 4849 20846 6592 11966 16446 6905 14412 14675 11772 18839 14588 7393 21182 11243 22077 14949 27612 17024 15434 20898 15787 16151 16513 16513 17993 16064;
19460 13685 12996 22480 7089 15336 13683 5712 0 13472 5106 7497 16147 9457 9192 16844 1234 7947 12070 11940 10048 10299 8061 14463 10878 2839 16806 16286 17701 11239 23901 12661 11724 16522 12122 12440 12803 12803 14282 11080;
30234 15269 25164 31647 19366 16315 5673 18651 13668 0 16883 9759 13705 12809 22119 15216 12556 14103 10329 23462 13628 6311 16247 10788 14836 14910 7331 27913 13481 15916 27214 13710 16784 11351 19112 17990 17893 17893 18028 2647;
14892 9673 17263 17588 4258 11172 12366 8632 5154 16699 0 7384 20046 5758 13440 12654 6196 3904 9046 7229 6350 10918 3587 11339 6397 7802 14626 11985 14424 6758 19420 8962 7243 13389 7493 7959 8322 8322 9801 14306;
20779 7534 19272 22294 9811 8776 6402 11851 7513 9403 7336 0 13086 3620 16227 9926 6663 4648 4657 14007 4438 3771 6792 7050 5646 9018 9393 18458 10288 6726 19802 5879 7594 9109 9647 8800 8703 8703 8838 7010;
33192 20306 24017 34707 22295 21548 16347 21600 16054 13630 19961 13477 0 16558 22049 21445 14942 17061 16168 26420 17376 13468 19205 18438 18584 14330 20479 30871 21676 19664 32739 18651 20532 20497 22329 21738 21641 21641 21776 11708;
18182 4426 21242 19317 9588 6076 7562 13686 9484 12447 5453 3297 16130 0 18198 7585 8634 2059 3485 11419 1299 6632 4185 5779 2507 10988 9414 15851 9008 3586 16662 3402 4455 7829 6823 5661 5564 5564 5416 10055;
14987 22405 6375 30372 9487 23980 22403 4893 9113 21803 13270 16216 21976 18177 0 25462 9564 16582 20790 9466 18768 19019 16388 23183 19204 8048 25526 11781 26421 19566 32228 21381 20050 25242 20403 20767 21130 21130 22609 19411;
17776 3658 28797 18666 16753 1761 9415 20858 17039 15214 12596 9773 21497 7682 25666 0 16189 9610 5209 18274 7514 9447 9270 4512 6860 18543 7991 20049 1770 6760 12619 4480 5919 3913 6409 5710 5102 5102 3771 13094;
20480 12908 12608 23592 8201 14559 12906 6659 1112 12306 6218 6720 14981 8680 9564 16068 0 7171 11294 12965 9272 9523 8056 13686 10128 2354 16029 17305 16925 10705 23655 11884 11574 15745 12558 12435 12683 12683 13816 9914;
16503 6243 19789 18281 7729 7894 9574 11828 8031 13945 3594 4731 17257 2015 16635 9403 7181 0 5303 9560 2607 8328 2468 7596 3463 9535 11232 14134 10826 4040 16990 5219 4909 9646 5902 6115 6018 6018 7151 11553;
21599 5356 23780 22734 12944 6512 4559 16359 12022 10347 8870 4592 16288 3518 20735 5531 11172 5476 0 14836 4716 4238 7602 2790 5924 13526 6105 19268 6020 7003 17779 3751 7819 4840 10240 9078 8981 8981 8209 8081;
7857 15112 13704 22169 5184 16611 19177 6973 12160 23548 7225 14334 26860 11619 9791 18093 13156 9764 14906 0 12210 17931 9181 17075 11836 14080 20835 4820 19863 12197 24516 14669 12682 19125 12572 13398 13761 13761 15240 21156;
16895 4392 21878 18019 10219 5892 8860 14318 10120 13488 6084 4338 17171 1301 18833 7374 9270 2691 4588 12050 0 7673 4076 5894 1208 11624 9813 14906 9124 2288 15363 3488 3156 7944 5524 4362 4265 4265 5193 11096;
24348 9392 22086 25619 13415 10603 4086 14665 10327 6404 10856 3801 13508 6782 19041 9622 9477 8252 4345 17612 7601 0 10396 5506 8809 11832 7814 22062 8930 9888 21869 7737 10757 7533 13085 11963 11866 11866 12000 4056;
14132 6093 20346 16695 7583 7592 12111 11714 8191 16482 3384 7267 19793 4552 16522 9074 8119 2537 7839 9201 3822 10865 0 8055 2817 10474 11975 11763 10844 3178 15840 5650 3662 10106 4502 4379 4742 4742 6221 14090;
21436 4723 26289 22411 15307 5769 5072 18868 14531 10881 11172 7101 18750 5829 23244 4673 13681 7779 2740 17138 5827 5517 8192 0 6327 16035 3919 19343 3552 7406 16757 3376 7353 2373 10069 8833 8561 8561 7639 8817;
15687 3789 22924 16811 10402 5288 9892 14507 10983 14520 6245 5370 18203 2333 19315 6770 10316 3737 5620 11923 1066 8705 2918 6156 0 12670 10075 13698 8540 1080 14155 3750 1948 7846 4316 3154 3057 3057 3985 12128;
21045 15226 10254 25146 9186 16877 15224 7459 2666 14624 7772 9038 14277 10998 7984 18386 2386 9488 13611 13852 11589 11840 10374 16004 12446 0 18347 17870 19242 13023 25973 14202 13891 18063 14789 14753 15000 15000 16134 12232;
25093 8380 28419 25988 17792 9365 4449 20998 16661 7422 14499 9231 20447 9297 25375 8231 15811 11255 6033 20614 9633 7647 11998 3972 10133 18165 0 23149 6373 11212 20107 7182 11009 4244 13725 12489 12218 12218 11295 9268;
3269 17087 12447 23091 9425 18535 23676 10994 16323 28047 11778 18833 31359 16118 11733 20016 17319 14102 19392 4764 14895 22430 11699 19128 13889 17868 23048 0 21787 14225 25619 16722 14491 21144 14247 15207 15570 15570 17049 25655;
19370 5218 29555 19904 18347 3354 7939 22134 17796 13628 14190 10366 22016 8979 26510 2032 16946 10929 5890 19868 8977 8967 10863 3548 8454 19301 6286 21642 0 8354 13849 6031 7512 2230 8002 7303 6695 6695 5364 12267;
15123 3742 23129 16247 10398 5189 10973 14503 10979 15601 6241 6451 19284 3414 19310 6671 10520 3928 6701 11919 2147 9786 2914 7237 1115 12875 11156 13694 8441 0 13591 4046 1289 7798 3752 2590 2493 2493 3730 13209;
23066 12913 36235 6148 23328 11248 21677 27604 24080 27384 19342 18864 31697 15567 32411 12509 23813 17221 17470 24390 15398 21598 16015 16775 14408 26168 20042 25682 13816 13293 0 13987 12929 15985 12394 11789 11185 11185 11655 25357;
18306 1655 24425 19281 12816 2898 8020 16914 12666 13807 8681 5726 18168 3338 21380 4425 11816 5288 3560 14647 3336 7611 5684 3220 3721 14171 7140 16834 6173 4291 15523 0 4102 5029 6939 5703 5431 5431 4509 11541;
14792 2858 23883 15916 11147 4305 11899 15252 11728 16527 6990 7377 20210 4340 20060 5787 11446 4854 7592 12668 3073 10712 3664 7283 2041 13801 11010 14409 7557 926 13261 4086 0 6915 3422 2259 2162 2162 2847 14135;
20940 4227 28327 21915 17230 5179 5981 20906 16569 11732 13095 9139 20788 7752 25283 4045 15719 9701 4662 19061 7750 7739 10115 2321 7744 18073 4390 20933 2200 7698 15933 4990 6857 0 9572 8336 8065 8065 7142 11040;
11410 5695 24148 12807 11182 4838 14370 15516 12038 18999 7130 9803 22682 6812 20324 6320 12537 6289 10099 12463 5545 13184 4544 10230 4538 14686 13846 14019 8090 3645 12463 7098 3281 9751 0 1743 1730 1730 4518 16606;
13077 4452 24715 14052 11979 4191 13470 16084 12560 18098 7822 8948 21781 5911 20892 5673 12489 6127 9198 13500 4644 12283 4496 8987 3612 14843 12603 15241 7443 2497 11952 5855 2133 8508 1710 0 880 880 3275 15706;
13133 4063 25053 14108 12317 3692 13081 16422 12899 17709 8160 8559 21392 5523 21230 5174 12629 6036 8810 13799 4255 11895 4834 8599 3223 14983 12215 15468 6944 2108 11453 5467 1745 8120 1765 608 0 0 2886 15317;
13133 4063 25053 14108 12317 3692 13081 16422 12899 17709 8160 8559 21392 5523 21230 5174 12629 6036 8810 13799 4255 11895 4834 8599 3223 14983 12215 15468 6944 2108 11453 5467 1745 8120 1765 608 0 0 2886 15317;
14506 3112 26511 15448 13883 2991 12511 17988 14464 17843 9726 8693 21526 5396 22796 4473 13902 7323 8052 15364 5083 12028 6400 7648 4050 16257 11264 17034 6243 3674 12711 4516 2915 7169 3139 2440 1832 1832 0 15451;
27829 13231 22760 29340 16962 14388 4973 16247 11264 2392 14487 7453 11758 10503 19715 13298 10151 11698 8249 21057 11322 4107 13842 8754 12530 12506 9105 25508 12177 13609 25382 11629 14478 10768 16798 15683 15587 15587 15721 0;
];
using JuMP, HiGHS
N = 25 #the problem is NP-hard we do not solve it for all cities
m = Model(optimizer_with_attributes(HiGHS.Optimizer));
JuMP.set_silent(m)
@variable(m, x[f=1:N, t=1:N], Bin)
@objective(m, Min, sum( x[i, j]*dist_mx[i,j] for i=1:N,j=1:N))
@constraint(m, notself[i=1:N], x[i, i] == 0)
@constraint(m, oneout[i=1:N], sum(x[i, 1:N]) == 1)
@constraint(m, onein[j=1:N], sum(x[1:N, j]) == 1)
for f=1:N, t=1:N
@constraint(m, x[f, t]+x[t, f] <= 1)
end
optimize!(m)
function getcycle(x_v, N)
x_val = round.(Int, x_v)
cycle_idx = Vector{Int}()
push!(cycle_idx, 1)
while true
v, idx = findmax(x_val[cycle_idx[end], 1:N])
if idx == cycle_idx[1]
break
else
push!(cycle_idx, idx)
end
end
cycle_idx
end
getcycle (generic function with 1 method)
22-element Vector{Int64}:
1
4
23
18
14
21
25
2
6
16
24
19
12
22
7
10
13
17
9
11
5
20
function solved(m, cycle_idx, N)
if length(cycle_idx) < N
cc = @constraint(m, sum(x[cycle_idx,cycle_idx]) <= length(cycle_idx)-1)
println("Added a constraint since the cycle lenght was $(length(cycle_idx)) < $N")
return false
end
return true
end
solved(m, getcycle(value.(x), N),N)
Added a constraint since the cycle lenght was 22 < 25
false
Handling cycles inspired by the tutorial available at: https://opensourc.es/blog/mip-tsp/
while true
optimize!(m)
status = termination_status(m)
cycle_idx = getcycle(value.(x), N)
if solved(m, cycle_idx,N)
break;
end
end
Added a constraint since the cycle lenght was 5 < 25
Added a constraint since the cycle lenght was 10 < 25
Added a constraint since the cycle lenght was 10 < 25
Added a constraint since the cycle lenght was 15 < 25
Added a constraint since the cycle lenght was 7 < 25
Added a constraint since the cycle lenght was 12 < 25
Added a constraint since the cycle lenght was 15 < 25
Added a constraint since the cycle lenght was 13 < 25
Added a constraint since the cycle lenght was 20 < 25
Added a constraint since the cycle lenght was 18 < 25
using CSV, DataFrames, HTTP
url = "https://szufel.pl/tsl/Subway_LV.csv"
sbws_la = DataFrame(CSV.File(HTTP.get(url).body))
sbws_la
Row | long | latt | name | address | node |
---|---|---|---|---|---|
Float64 | Float64 | String7 | String | Int64 | |
1 | -115.314 | 36.1003 | Subway | 10140 W Tropicana Ave, Las Vegas, NV, 89147 | 5503377919 |
2 | -115.141 | 36.1148 | Subway | 1040 E Flamingo, Las Vegas, NV, 89109 | 2747920069 |
3 | -115.325 | 36.2187 | Subway | 10470 W Cheyanne, Las Vegas, NV, 89129 | 2590273363 |
4 | -115.207 | 35.9976 | Subway | 10550 Southern Highlands Pky, Las Vegas, NV, 89141 | 5514940961 |
5 | -115.244 | 36.1588 | Subway | 1105 S Rainbow, Las Vegas, NV, 89102 | 5794871693 |
6 | -115.137 | 36.1011 | Subway | 1196 E Tropicana Ave, Las Vegas, NV, 89119 | 5717536771 |
7 | -115.08 | 36.1575 | Subway | 1300 South Lamb Blvd., Las Vegas, NV, 89104 | 4807070083 |
8 | -115.26 | 36.1901 | Subway | 1750 N Buffalo, Las Vegas, NV, 89128 | 5778125595 |
9 | -115.206 | 36.1948 | Subway | 1940 N Decatur Blvd, Las Vegas, NV, 89108 | 5797720840 |
10 | -115.062 | 36.1956 | Subway | 1961 N Nellis Blvd, Las Vegas, NV, 89115 | 5521321066 |
11 | -115.208 | 36.1498 | Subway | 2003 S Decatur Blvd, Las Vegas, NV, 89102 | 5844881906 |
12 | -115.144 | 36.1707 | Subway | 202 Fremont Street, Las Vegas, NV, 89101 | 3813314952 |
13 | -115.12 | 36.2762 | Subway | 2225 E Centennial Pky, Las Vegas, NV, 89081 | 5509334872 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
107 | -115.149 | 36.0855 | Subway | C Gate McCarran Int Airport, Las Vegas, NV, 89111 | 4538984240 |
108 | -115.146 | 36.1715 | Subway | One South Main St, Las Vegas, NV, 89125 | 3813314954 |
109 | -115.178 | 36.2857 | Subway | 6885 Aliante Parkway, N Las Vegas, NV, 89084 | 4208824392 |
110 | -115.118 | 36.2176 | Subway | 2265 Cheyenne Avenue, North Las Vegas, NV, 89030 | 5851001667 |
111 | -115.116 | 36.24 | Subway | 2546 E Craig Rd, North Las Vegas, NV, 89030 | 5534608424 |
112 | -115.109 | 36.2081 | Subway | 2668 North Las Vegas Blvd, North Las Vegas, NV, 89030 | 5483724476 |
113 | -115.179 | 36.2396 | Subway | 2816 W Craig Rd, North Las Vegas, NV, 89030 | 5513681535 |
114 | -115.182 | 36.2617 | Subway | 3030 W Ann Rd, North Las Vegas, NV, 89031 | 5512410055 |
115 | -115.193 | 36.1999 | Subway | 3950 W Lake Mead Blvd, North Las Vegas, NV, 89032 | 5788688096 |
116 | -115.097 | 36.2396 | Subway | 4375 N Pecos Rd, North Las Vegas, NV, 89030 | 5534608851 |
117 | -115.155 | 36.2603 | Subway | 5546 Camino Al Norte, North Las Vegas, NV, 89031 | 5096983700 |
118 | -115.18 | 36.2753 | Subway | 6360 Simmons St., North Las Vegas, NV, 89031 | 5512410390 |
using Plots
cycle_idx = getcycle(value.(x), N)
ids = vcat(cycle_idx, cycle_idx[1])
p = plot(sbws_la.long[ids], sbws_la.latt[ids])
Optional Gurobi example
using JuMP, Gurobi
N = 25 #the problem is NP-hard we do not solve it for all cities
m2 = Model(optimizer_with_attributes(Gurobi.Optimizer));
set_attribute(m2, "TimeLimit", 60)
JuMP.set_silent(m2)
@variable(m2, x[f=1:N, t=1:N], Bin)
@objective(m2, Min, sum( x[i, j]*dist_mx[i,j] for i=1:N,j=1:N))
@constraint(m2, notself[i=1:N], x[i, i] == 0)
@constraint(m2, oneout[i=1:N], sum(x[i, 1:N]) == 1)
@constraint(m2, onein[j=1:N], sum(x[1:N, j]) == 1)
for f=1:N, t=1:N
@constraint(m2, x[f, t]+x[t, f] <= 1)
end
#optimize!(m2)
function callbackhandle(cb)
cycle_idx = getcycle(callback_value.(Ref(cb), x), N)
println("Callback! N= $N cycle_idx: $cycle_idx of length: $(length(cycle_idx))")
if length(cycle_idx) < N
con = @build_constraint(sum(x[cycle_idx,cycle_idx]) <= length(cycle_idx)-1)
MOI.submit(m2, MOI.LazyConstraint(cb), con)
print("added a lazy constraint: ")
println(con)
end
end
MOI.set(m2, MOI.LazyConstraintCallback(), callbackhandle)
optimize!(m2)
println("Trip length $(objective_value(m2))")
using LinearAlgebra
# here we generate a sample problem structure
x = rand(Float64,(1000,2))*Diagonal([6,10]) .- [4 3]
ϵ = randn(1000).*2 #errors
a, b, c = 1, 10, 7 # values we are trying to estimate
A = [a b/2;b/2 c]
# y = a * x₁² + b*x₁x₂ + c x₂²
y = (x * A ) .* x * [1;1] .+ ϵ # explained variable
;
y'
1×1000 adjoint(::Vector{Float64}) with eltype Float64:
-27.7648 84.2602 7.41514 10.4189 … 46.4475 202.429 28.5886 1.53657
using Ipopt
m = Model(optimizer_with_attributes(Ipopt.Optimizer));
@variable(m, aa[1:2,1:2])
function errs(aa)
sum((y .- (x * aa ) .* x * [1;1]) .^ 2)
end
@objective(m, Min, errs(aa))
optimize!(m)
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit https://github.com/coin-or/Ipopt
******************************************************************************
This is Ipopt version 3.14.13, running with linear solver MUMPS 5.6.1.
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 10
Total number of variables............................: 4
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.4434260e+07 0.00e+00 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 4.0406556e+03 0.00e+00 7.00e-04 -1.0 7.00e+00 -4.0 1.00e+00 1.00e+00f 1
2 4.0406514e+03 0.00e+00 5.20e-09 -5.7 1.56e-04 -4.5 1.00e+00 1.00e+00f 1
Number of Iterations....: 2
(scaled) (unscaled)
Objective...............: 1.0587604556415567e-01 4.0406514404900372e+03
Dual infeasibility......: 5.2033165641907263e-09 1.9857927691191438e-04
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 5.2033165641907263e-09 1.9857927691191438e-04
Number of objective function evaluations = 3
Number of objective gradient evaluations = 3
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 1
Total seconds in IPOPT = 0.017
EXIT: Optimal Solution Found.
using Gurobi, JuMP
m = Model(optimizer_with_attributes(Gurobi.Optimizer));
@variable(m, aa[1:2,1:2])
function errs(aa)
sum((y .- (x * aa ) .* x * [1;1]) .^ 2)
end
@objective(m, Min, errs(aa))
optimize!(m)
status = termination_status(m)
println("Cost: $(objective_value(m))")
res = value.(aa)
println("aa=$res")
println("a, b, c = $(res[1,1]), $(res[1,2]+res[2,1]), $(res[2,2])")
Set parameter Username
Academic license - for non-commercial use only - expires 2024-09-01
Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (win64)
CPU model: 13th Gen Intel(R) Core(TM) i7-1355U, instruction set [SSE2|AVX|AVX2]
Thread count: 10 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 0 rows, 4 columns and 0 nonzeros
Model fingerprint: 0x3c39708a
Model has 10 quadratic objective terms
Coefficient statistics:
Matrix range [0e+00, 0e+00]
Objective range [2e+05, 4e+06]
QObjective range [8e+04, 7e+05]
Bounds range [0e+00, 0e+00]
RHS range [0e+00, 0e+00]
Presolve time: 0.01s
Presolved: 0 rows, 4 columns, 0 nonzeros
Presolved model has 10 quadratic objective terms
Ordering time: 0.00s
Barrier statistics:
Free vars : 7
AA' NZ : 3.000e+00
Factor NZ : 6.000e+00
Factor Ops : 1.400e+01 (less than 1 second per iteration)
Threads : 1
Objective Residual
Iter Primal Dual Primal Dual Compl Time
0 1.44342596e+07 1.44342596e+07 0.00e+00 3.82e+06 0.00e+00 0s
1 1.44339482e+07 1.44342596e+07 1.58e-08 3.82e+06 0.00e+00 0s
2 1.44325405e+07 1.44342596e+07 3.72e-09 3.82e+06 0.00e+00 0s
3 1.44311135e+07 1.44342594e+07 1.96e-08 3.82e+06 0.00e+00 0s
4 1.44298081e+07 1.44342593e+07 2.68e-08 3.82e+06 0.00e+00 0s
5 1.44285376e+07 1.44342590e+07 3.29e-08 3.82e+06 0.00e+00 0s
6 1.44273214e+07 1.44342588e+07 9.04e-08 3.82e+06 0.00e+00 0s
7 1.44229613e+07 1.44342574e+07 2.09e-07 3.81e+06 0.00e+00 0s
8 1.44105260e+07 1.44342498e+07 2.78e-07 3.81e+06 0.00e+00 0s
9 1.43732750e+07 1.44341950e+07 6.31e-07 3.81e+06 0.00e+00 0s
10 1.43216429e+07 1.44340390e+07 1.41e-06 3.80e+06 0.00e+00 0s
11 1.42552714e+07 1.44337011e+07 1.30e-06 3.79e+06 0.00e+00 0s
12 1.42233001e+07 1.44334829e+07 1.56e-06 3.79e+06 0.00e+00 0s
13 1.40577195e+07 1.44317708e+07 2.07e-06 3.77e+06 0.00e+00 0s
14 1.37865496e+07 1.44268240e+07 5.11e-06 3.73e+06 0.00e+00 0s
15 1.35572961e+07 1.44205155e+07 6.70e-06 3.70e+06 0.00e+00 0s
16 1.32773447e+07 1.44100932e+07 1.72e-05 3.66e+06 0.00e+00 0s
17 1.23107168e+07 1.43498046e+07 2.97e-05 3.52e+06 0.00e+00 0s
18 1.15289591e+07 1.42711491e+07 4.99e-05 3.41e+06 0.00e+00 0s
19 1.00599881e+07 1.40404258e+07 7.92e-05 3.19e+06 0.00e+00 0s
20 1.87907187e+06 8.53298174e+06 1.10e-04 1.38e+06 0.00e+00 0s
21 6.84438572e+05 5.59182113e+06 1.19e-04 8.29e+05 0.00e+00 0s
22 3.71409807e+03 4.04692001e+03 1.43e-04 8.29e-01 0.00e+00 0s
23 4.04065140e+03 4.04065145e+03 6.81e-11 8.29e-07 0.00e+00 0s
Barrier solved model in 23 iterations and 0.01 seconds (0.00 work units)
Optimal objective 4.04065140e+03
User-callback calls 85, time in user-callback 0.00 sec
Cost: 4040.6514033079147
aa=[1.008368985622381 5.001945560597719; 5.001945560597719 6.998278968876772]
a, b, c = 1.008368985622381, 10.003891121195439, 6.998278968876772
using Ipopt, JuMP, LinearAlgebra
obs_cases = vcat(1,2,4,8,15,27,44,58,55,32,12,3,1,zeros(13))
SI_max = length(obs_cases)
N = 300
300
1×26 adjoint(::Vector{Float64}) with eltype Float64:
1.0 2.0 4.0 8.0 15.0 27.0 44.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
using JuMP, Ipopt
m = Model(optimizer_with_attributes(Ipopt.Optimizer, ("print_level"=>2)));
@variable(m, 0.5 <= α <= 1.5)
@variable(m, 0.05 <= β <= 70)
@variable(m, 0 <= I_[1:SI_max] <= N)
@variable(m, 0 <= S[1:SI_max] <= N)
@variable(m, ε[1:SI_max])
@constraint(m, ε .== I_ .- obs_cases )
@constraint(m, I_[1] == 1)
for i=2:SI_max
@NLconstraint(m, I_[i] == β*(I_[i-1]^α)*S[i-1]/N)
end
@constraint(m, S[1] == N)
for i=2:SI_max
@constraint(m, S[i] == S[i-1]-I_[i])
end
@NLobjective(m, Min, sum(ε[i]^2 for i in 1:SI_max))
println(m)
Min ε[1] ^ 2.0 + ε[2] ^ 2.0 + ε[3] ^ 2.0 + ε[4] ^ 2.0 + ε[5] ^ 2.0 + ε[6] ^ 2.0 + ε[7] ^ 2.0 + ε[8] ^ 2.0 + ε[9] ^ 2.0 + ε[10] ^ 2.0 + ε[11] ^ 2.0 + ε[12] ^ 2.0 + ε[13] ^ 2.0 + ε[14] ^ 2.0 + ε[15] ^ 2.0 + ε[16] ^ 2.0 + ε[17] ^ 2.0 + ε[18] ^ 2.0 + ε[19] ^ 2.0 + ε[20] ^ 2.0 + ε[21] ^ 2.0 + ε[22] ^ 2.0 + ε[23] ^ 2.0 + ε[24] ^ 2.0 + ε[25] ^ 2.0 + ε[26] ^ 2.0
Subject to
-I_[1] + ε[1] == -1
-I_[2] + ε[2] == -2
-I_[3] + ε[3] == -4
-I_[4] + ε[4] == -8
-I_[5] + ε[5] == -15
-I_[6] + ε[6] == -27
-I_[7] + ε[7] == -44
-I_[8] + ε[8] == -58
-I_[9] + ε[9] == -55
-I_[10] + ε[10] == -32
-I_[11] + ε[11] == -12
-I_[12] + ε[12] == -3
-I_[13] + ε[13] == -1
-I_[14] + ε[14] == 0
-I_[15] + ε[15] == 0
-I_[16] + ε[16] == 0
-I_[17] + ε[17] == 0
-I_[18] + ε[18] == 0
-I_[19] + ε[19] == 0
-I_[20] + ε[20] == 0
-I_[21] + ε[21] == 0
-I_[22] + ε[22] == 0
-I_[23] + ε[23] == 0
-I_[24] + ε[24] == 0
-I_[25] + ε[25] == 0
-I_[26] + ε[26] == 0
I_[1] == 1
S[1] == 300
I_[2] - S[1] + S[2] == 0
I_[3] - S[2] + S[3] == 0
I_[4] - S[3] + S[4] == 0
I_[5] - S[4] + S[5] == 0
I_[6] - S[5] + S[6] == 0
I_[7] - S[6] + S[7] == 0
I_[8] - S[7] + S[8] == 0
I_[9] - S[8] + S[9] == 0
I_[10] - S[9] + S[10] == 0
I_[11] - S[10] + S[11] == 0
I_[12] - S[11] + S[12] == 0
I_[13] - S[12] + S[13] == 0
I_[14] - S[13] + S[14] == 0
I_[15] - S[14] + S[15] == 0
I_[16] - S[15] + S[16] == 0
I_[17] - S[16] + S[17] == 0
I_[18] - S[17] + S[18] == 0
I_[19] - S[18] + S[19] == 0
I_[20] - S[19] + S[20] == 0
I_[21] - S[20] + S[21] == 0
I_[22] - S[21] + S[22] == 0
I_[23] - S[22] + S[23] == 0
I_[24] - S[23] + S[24] == 0
I_[25] - S[24] + S[25] == 0
I_[26] - S[25] + S[26] == 0
α >= 0.5
β >= 0.05
I_[1] >= 0
I_[2] >= 0
I_[3] >= 0
I_[4] >= 0
I_[5] >= 0
I_[6] >= 0
I_[7] >= 0
I_[8] >= 0
I_[9] >= 0
I_[10] >= 0
I_[11] >= 0
I_[12] >= 0
I_[13] >= 0
I_[14] >= 0
I_[15] >= 0
I_[16] >= 0
I_[17] >= 0
I_[18] >= 0
I_[19] >= 0
I_[20] >= 0
I_[21] >= 0
I_[22] >= 0
I_[23] >= 0
I_[24] >= 0
I_[25] >= 0
I_[26] >= 0
S[1] >= 0
S[2] >= 0
S[3] >= 0
S[4] >= 0
S[5] >= 0
S[6] >= 0
S[7] >= 0
S[8] >= 0
S[9] >= 0
S[10] >= 0
S[11] >= 0
S[12] >= 0
S[13] >= 0
S[14] >= 0
S[15] >= 0
S[16] >= 0
S[17] >= 0
S[18] >= 0
S[19] >= 0
S[20] >= 0
S[21] >= 0
S[22] >= 0
S[23] >= 0
S[24] >= 0
S[25] >= 0
S[26] >= 0
α <= 1.5
β <= 70
I_[1] <= 300
I_[2] <= 300
I_[3] <= 300
I_[4] <= 300
I_[5] <= 300
I_[6] <= 300
I_[7] <= 300
I_[8] <= 300
I_[9] <= 300
I_[10] <= 300
I_[11] <= 300
I_[12] <= 300
I_[13] <= 300
I_[14] <= 300
I_[15] <= 300
I_[16] <= 300
I_[17] <= 300
I_[18] <= 300
I_[19] <= 300
I_[20] <= 300
I_[21] <= 300
I_[22] <= 300
I_[23] <= 300
I_[24] <= 300
I_[25] <= 300
I_[26] <= 300
S[1] <= 300
S[2] <= 300
S[3] <= 300
S[4] <= 300
S[5] <= 300
S[6] <= 300
S[7] <= 300
S[8] <= 300
S[9] <= 300
S[10] <= 300
S[11] <= 300
S[12] <= 300
S[13] <= 300
S[14] <= 300
S[15] <= 300
S[16] <= 300
S[17] <= 300
S[18] <= 300
S[19] <= 300
S[20] <= 300
S[21] <= 300
S[22] <= 300
S[23] <= 300
S[24] <= 300
S[25] <= 300
S[26] <= 300
(I_[2] - (β * I_[1] ^ α * S[1]) / 300.0) - 0.0 == 0
(I_[3] - (β * I_[2] ^ α * S[2]) / 300.0) - 0.0 == 0
(I_[4] - (β * I_[3] ^ α * S[3]) / 300.0) - 0.0 == 0
(I_[5] - (β * I_[4] ^ α * S[4]) / 300.0) - 0.0 == 0
(I_[6] - (β * I_[5] ^ α * S[5]) / 300.0) - 0.0 == 0
(I_[7] - (β * I_[6] ^ α * S[6]) / 300.0) - 0.0 == 0
(I_[8] - (β * I_[7] ^ α * S[7]) / 300.0) - 0.0 == 0
(I_[9] - (β * I_[8] ^ α * S[8]) / 300.0) - 0.0 == 0
(I_[10] - (β * I_[9] ^ α * S[9]) / 300.0) - 0.0 == 0
(I_[11] - (β * I_[10] ^ α * S[10]) / 300.0) - 0.0 == 0
(I_[12] - (β * I_[11] ^ α * S[11]) / 300.0) - 0.0 == 0
(I_[13] - (β * I_[12] ^ α * S[12]) / 300.0) - 0.0 == 0
(I_[14] - (β * I_[13] ^ α * S[13]) / 300.0) - 0.0 == 0
(I_[15] - (β * I_[14] ^ α * S[14]) / 300.0) - 0.0 == 0
(I_[16] - (β * I_[15] ^ α * S[15]) / 300.0) - 0.0 == 0
(I_[17] - (β * I_[16] ^ α * S[16]) / 300.0) - 0.0 == 0
(I_[18] - (β * I_[17] ^ α * S[17]) / 300.0) - 0.0 == 0
(I_[19] - (β * I_[18] ^ α * S[18]) / 300.0) - 0.0 == 0
(I_[20] - (β * I_[19] ^ α * S[19]) / 300.0) - 0.0 == 0
(I_[21] - (β * I_[20] ^ α * S[20]) / 300.0) - 0.0 == 0
(I_[22] - (β * I_[21] ^ α * S[21]) / 300.0) - 0.0 == 0
(I_[23] - (β * I_[22] ^ α * S[22]) / 300.0) - 0.0 == 0
(I_[24] - (β * I_[23] ^ α * S[23]) / 300.0) - 0.0 == 0
(I_[25] - (β * I_[24] ^ α * S[24]) / 300.0) - 0.0 == 0
(I_[26] - (β * I_[25] ^ α * S[25]) / 300.0) - 0.0 == 0
Cost: 0.4826914548884895
α=0.9978555010305015
β=2.0069930759045875
Row | long | latt | name | address | node |
---|---|---|---|---|---|
Float64 | Float64 | String7 | String | Int64 | |
1 | -115.314 | 36.1003 | Subway | 10140 W Tropicana Ave, Las Vegas, NV, 89147 | 5503377919 |
2 | -115.141 | 36.1148 | Subway | 1040 E Flamingo, Las Vegas, NV, 89109 | 2747920069 |
3 | -115.325 | 36.2187 | Subway | 10470 W Cheyanne, Las Vegas, NV, 89129 | 2590273363 |
4 | -115.207 | 35.9976 | Subway | 10550 Southern Highlands Pky, Las Vegas, NV, 89141 | 5514940961 |
5 | -115.244 | 36.1588 | Subway | 1105 S Rainbow, Las Vegas, NV, 89102 | 5794871693 |
6 | -115.137 | 36.1011 | Subway | 1196 E Tropicana Ave, Las Vegas, NV, 89119 | 5717536771 |
7 | -115.08 | 36.1575 | Subway | 1300 South Lamb Blvd., Las Vegas, NV, 89104 | 4807070083 |
8 | -115.26 | 36.1901 | Subway | 1750 N Buffalo, Las Vegas, NV, 89128 | 5778125595 |
9 | -115.206 | 36.1948 | Subway | 1940 N Decatur Blvd, Las Vegas, NV, 89108 | 5797720840 |
10 | -115.062 | 36.1956 | Subway | 1961 N Nellis Blvd, Las Vegas, NV, 89115 | 5521321066 |
11 | -115.208 | 36.1498 | Subway | 2003 S Decatur Blvd, Las Vegas, NV, 89102 | 5844881906 |
12 | -115.144 | 36.1707 | Subway | 202 Fremont Street, Las Vegas, NV, 89101 | 3813314952 |
13 | -115.12 | 36.2762 | Subway | 2225 E Centennial Pky, Las Vegas, NV, 89081 | 5509334872 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
107 | -115.149 | 36.0855 | Subway | C Gate McCarran Int Airport, Las Vegas, NV, 89111 | 4538984240 |
108 | -115.146 | 36.1715 | Subway | One South Main St, Las Vegas, NV, 89125 | 3813314954 |
109 | -115.178 | 36.2857 | Subway | 6885 Aliante Parkway, N Las Vegas, NV, 89084 | 4208824392 |
110 | -115.118 | 36.2176 | Subway | 2265 Cheyenne Avenue, North Las Vegas, NV, 89030 | 5851001667 |
111 | -115.116 | 36.24 | Subway | 2546 E Craig Rd, North Las Vegas, NV, 89030 | 5534608424 |
112 | -115.109 | 36.2081 | Subway | 2668 North Las Vegas Blvd, North Las Vegas, NV, 89030 | 5483724476 |
113 | -115.179 | 36.2396 | Subway | 2816 W Craig Rd, North Las Vegas, NV, 89030 | 5513681535 |
114 | -115.182 | 36.2617 | Subway | 3030 W Ann Rd, North Las Vegas, NV, 89031 | 5512410055 |
115 | -115.193 | 36.1999 | Subway | 3950 W Lake Mead Blvd, North Las Vegas, NV, 89032 | 5788688096 |
116 | -115.097 | 36.2396 | Subway | 4375 N Pecos Rd, North Las Vegas, NV, 89030 | 5534608851 |
117 | -115.155 | 36.2603 | Subway | 5546 Camino Al Norte, North Las Vegas, NV, 89031 | 5096983700 |
118 | -115.18 | 36.2753 | Subway | 6360 Simmons St., North Las Vegas, NV, 89031 | 5512410390 |